Epigeic Earthworms: Difference between revisions
No edit summary |
m (The LinkTitles extension automatically added links to existing pages (<a rel="nofollow" class="external free" href="https://github.com/bovender/LinkTitles">https://github.com/bovender/LinkTitles</a>).) |
||
(15 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
'''''Epigeic''''' '''is Greek''' "'''''for upon the earth.'''''" | '''''Epigeic''''' '''is Greek''' "'''''for upon the earth.'''''" | ||
Oligochaeta or earthworms of the [[Annelids]] phylum are divided into 3 categories | Oligochaeta or earthworms of the [[Annelids]] phylum are divided into 3 categories: anecic, endogeic, and the '''epigeic''', depending on where they dwell within the [[Soil Horizons]]. Epigeic earthworms are defined as species that inhabit and feed at the [[soil]] surface. | ||
---- | ---- | ||
== Description == | == Description == | ||
''' | '''Epigeic Earthworms''' are small bodied and range from 1-7 cm in length. Some are colored bright red, although most have a reddish brown skin pigmentation. Their pigmentation is darker on their back and lighter on their tail and abdomen. Which may provide extra protection from ultra violet rays.[1] Epigeics share essentially the same anatomy and reproduction methods as the endogeic and anecic species. | ||
== Range, Habitat and Diet == | == Range, Habitat and Diet == | ||
They are adapted to live in moist conditions and variable temperatures at the soil surface. The worms found in compost piles are epigeic and are unlikely to survive in an environment of | They are adapted to live in moist conditions and variable temperatures at the soil surface. The worms found in [[compost]] piles are epigeic and are unlikely to survive in an environment with low amounts of [[Organic Matter|organic matter]].[2] Epigeics inhabit every continent except Antarctica. However, all earthworms are invasive species in the temperate and boreal forests of North America.[3] The endogeic species can turn epigeic during suitable weather conditions, but retreat under the soil during dry weather conditions. Other '''epigeics''' migrate soil to aestivate or hibernate. Some classify earthworms with both these "migratory" type behaviors as epi-endogeics. | ||
---- | ---- | ||
Line 23: | Line 23: | ||
==== '''''Dendrobaena octaedra''''' ==== | ==== '''''Dendrobaena octaedra''''' ==== | ||
''Dendrobaena octaedra'' is a small (2-4 cm) ''' | ''Dendrobaena octaedra'' is a small (2-4 cm in length) '''epigeic''' with extensive morphological variability. This species has been introduced to the North American range and demonstrates wide variability in somatic and reproductive characteristics in its native Northern European range.[4] | ||
''Dendrobaena octaedra'' is common in coniferous forests in its native European habitat | ''Dendrobaena octaedra'' is common in coniferous forests in its native European habitat as well as its foreign North American range.[5] | ||
==== '''''Eudrilus eugeniae''''' ==== | ==== '''''Eudrilus eugeniae''''' ==== | ||
''Eudrilus eugeniae'' is frequently used in the vermicomposting of solid wastes. | ''Eudrilus eugeniae'' is frequently used in the vermicomposting of solid wastes. Similar epigeic genera – ''Eisenia foetida'' and ''Perionyx excavatus'' are also able to speed up the [[decomposition]] process of [[Organic Matter|organic matter]], especially in tropical conditions.[6] | ||
==== '''''Lumbricus castaneus''''' ==== | ==== '''''Lumbricus castaneus''''' ==== | ||
Line 33: | Line 33: | ||
==== '''''Eiseniella tetraedra''''' ==== | ==== '''''Eiseniella tetraedra''''' ==== | ||
This red worm may vary from 2 to 8 cm in length. It is considered an aquatic species with a distinctive cliellum (saddle) around its segments. They are widespread | This red worm may vary from 2 to 8 cm in length. It is considered an aquatic species with a distinctive cliellum (saddle) around its segments. They are present widespread across Britain and found year round within: gardens, fields, pastures, forests, estuary flats, lake shores, manure, and other damp conditions.[8] | ||
== Ecological Impact== | == Ecological Impact== | ||
==== Benefits ==== | ==== Benefits ==== | ||
Based on the feeding behavior of earthworms, epigeic species have a greater potential as waste decomposers | Based on the feeding behavior of earthworms, '''epigeic''' species have a greater potential as waste [[decomposers]] than anecics and endogeics due to their [[humus]] consumption and surface dwelling nature.[6] Epigeics are considered detrivores but will feed primarily on microorganisms associated with the decaying surface litter while facilitating the breakdown and mineralization of that region.[9] These earthworms exert important effects on the presence of decomposer [[microorganisms]] and their microbial grazers, which leads to an increase in the rate of [[decomposition]] of the [[Organic Matter|organic matter]].[10] Nevertheless, little is known about whether and to what extent these changes are due to the direct effects of earthworms on the decaying material (i.e. transformations of the ingested material during passage through the gut) or due to indirect effects related to their casting and burrowing activities.[11] | ||
==== Subversive effects ==== | ==== Subversive effects ==== | ||
Invasive earthworms are particularly problematic in previously earthworm-free temperate and boreal forests of North America that are dominated by ''Acer, Quercus, Betula, Pinus'' and ''Populus'' trees.[3] '''Epigeics''' physically disrupt the organic layer of the soil by consuming and mixing the F and H [[Soil Horizons]] layers, producing a | Invasive earthworms are particularly problematic in previously [[earthworm]]-free temperate and boreal forests of North America that are dominated by ''Acer, Quercus, Betula, Pinus'' and ''Populus'' trees.[3] '''Epigeics''' physically disrupt the organic layer of the soil by consuming and mixing the F and H [[Soil Horizons]] layers, producing a homogeneous and granular form of organic forest floor.[5] It has been shown that fungi and macroinvertebrate populations are altered in presence of epegeics.[1] Although some invasive epegeics change the dynamics of these forests they seem to have a limited impact on the mineral structure of the soil and composition of the forest floor. The endoeic and anecic earthworms are found to have more deleterious effects on the forest floor and in turn the health of ecosystem with their extraordinary mixing of the [[Soil Horizons]].[1][3] | ||
Line 59: | Line 55: | ||
https://link.springer.com/article/10.1007/s10530-006-9019-3 | https://link.springer.com/article/10.1007/s10530-006-9019-3 | ||
[4] Terhivuo, Juhani, and Anssi Saura. “Dispersal and Clonal Diversity of North-European Parthenogenetic Earthworms.” Biological Invasions Belowground: Earthworms as Invasive Species, 2006, pp. 5–18., doi:10.1007/978-1-4020-5429-7_2. | [4] Terhivuo, Juhani, and Anssi Saura. “Dispersal and Clonal [[Diversity]] of North-European Parthenogenetic Earthworms.” Biological Invasions Belowground: Earthworms as Invasive Species, 2006, pp. 5–18., doi:10.1007/978-1-4020-5429-7_2. | ||
https://link.springer.com/article/10.1007/s10530-006-9015-7 | https://link.springer.com/article/10.1007/s10530-006-9015-7 | ||
[5] Addison, J.a., and S.b. Holmes. “Effect of Two Commercial Formulations of Bacillusthuringiensis Suhsp. Kurstaki on the Forest Earthworm Dendrobaenaoctaedra.” Canadian Journal of Forest Research, vol. 26, no. 9, 1996, pp. 1594–1601., doi:10.1139/x26-179. https://www.nrcresearchpress.com/doi/abs/10.1139/x26-179#.XM0hFo5KjIU | [5] Addison, J.a., and S.b. Holmes. “Effect of Two Commercial Formulations of Bacillusthuringiensis Suhsp. Kurstaki on the Forest Earthworm Dendrobaenaoctaedra.” Canadian Journal of Forest Research, vol. 26, no. 9, 1996, pp. 1594–1601., doi:10.1139/x26-179. https://www.nrcresearchpress.com/doi/abs/10.1139/x26-179#.XM0hFo5KjIU | ||
[6] Singh, Arjun, et al. “Taxonomic and Functional Diversity of the Culturable Microbiomes of Epigeic Earthworms and Their Prospects in Agriculture.” Journal of Basic Microbiology, vol. 56, no. 9, 2016, pp. 1009–1020., doi:10.1002/jobm.201500779. | [6] Singh, Arjun, et al. “Taxonomic and Functional Diversity of the Culturable Microbiomes of Epigeic Earthworms and Their Prospects in [[Agriculture]].” Journal of Basic Microbiology, vol. 56, no. 9, 2016, pp. 1009–1020., doi:10.1002/jobm.201500779. | ||
https://onlinelibrary.wiley.com/doi/full/10.1002/jobm.201500779 | https://onlinelibrary.wiley.com/doi/full/10.1002/jobm.201500779 | ||
Line 76: | Line 72: | ||
https://pdfs.semanticscholar.org/2540/a686a6cfa2f71fef74fd692182821583aa93.pdf | https://pdfs.semanticscholar.org/2540/a686a6cfa2f71fef74fd692182821583aa93.pdf | ||
[10] Monroy, Fernando, et al. “Changes in Density of Nematodes, Protozoa and Total Coliforms after Transit through the Gut of Four Epigeic Earthworms (Oligochaeta).” Applied Soil Ecology, vol. 39, no. 2, 2008, pp. 127–132., doi:10.1016/j.apsoil.2007.11.011. https://www.researchgate.net/publication/222415275_Changes_in_density_of_nematodes_protozoa_and_total_coliforms_after_transit_through_the_gut_of_four_epigeic_earthworms_Oligochaeta | [10] Monroy, Fernando, et al. “Changes in Density of [[Nematodes]], [[Protozoa]] and Total Coliforms after Transit through the Gut of Four Epigeic Earthworms (Oligochaeta).” Applied Soil [[Ecology]], vol. 39, no. 2, 2008, pp. 127–132., doi:10.1016/j.apsoil.2007.11.011. https://www.researchgate.net/publication/222415275_Changes_in_density_of_nematodes_protozoa_and_total_coliforms_after_transit_through_the_gut_of_four_epigeic_earthworms_Oligochaeta | ||
[11]Domínguez, Jorge, and María Gómez-Brandón. “The Influence of Earthworms on Nutrient Dynamics during the Process of Vermicomposting.” Waste Management & Research, vol. 31, no. 8, 2013, pp. 859–868., doi:10.1177/0734242x13497079. | [11]Domínguez, Jorge, and María Gómez-Brandón. “The Influence of Earthworms on Nutrient Dynamics during the Process of Vermicomposting.” Waste Management & Research, vol. 31, no. 8, 2013, pp. 859–868., doi:10.1177/0734242x13497079. | ||
http://jdguez.webs.uvigo.es/wp-content/uploads/2013/07/the-influence-of-earthworms-on-nutrient-dynamics.pdf | http://jdguez.webs.uvigo.es/wp-content/uploads/2013/07/the-influence-of-earthworms-on-nutrient-dynamics.pdf |
Latest revision as of 14:11, 5 June 2023
Epigeic is Greek "for upon the earth."
Oligochaeta or earthworms of the Annelids phylum are divided into 3 categories: anecic, endogeic, and the epigeic, depending on where they dwell within the Soil Horizons. Epigeic earthworms are defined as species that inhabit and feed at the soil surface.
Description
Epigeic Earthworms are small bodied and range from 1-7 cm in length. Some are colored bright red, although most have a reddish brown skin pigmentation. Their pigmentation is darker on their back and lighter on their tail and abdomen. Which may provide extra protection from ultra violet rays.[1] Epigeics share essentially the same anatomy and reproduction methods as the endogeic and anecic species.
Range, Habitat and Diet
They are adapted to live in moist conditions and variable temperatures at the soil surface. The worms found in compost piles are epigeic and are unlikely to survive in an environment with low amounts of organic matter.[2] Epigeics inhabit every continent except Antarctica. However, all earthworms are invasive species in the temperate and boreal forests of North America.[3] The endogeic species can turn epigeic during suitable weather conditions, but retreat under the soil during dry weather conditions. Other epigeics migrate soil to aestivate or hibernate. Some classify earthworms with both these "migratory" type behaviors as epi-endogeics.
Example Species
Dendrobaena octaedra
Dendrobaena octaedra is a small (2-4 cm in length) epigeic with extensive morphological variability. This species has been introduced to the North American range and demonstrates wide variability in somatic and reproductive characteristics in its native Northern European range.[4] Dendrobaena octaedra is common in coniferous forests in its native European habitat as well as its foreign North American range.[5]
Eudrilus eugeniae
Eudrilus eugeniae is frequently used in the vermicomposting of solid wastes. Similar epigeic genera – Eisenia foetida and Perionyx excavatus are also able to speed up the decomposition process of organic matter, especially in tropical conditions.[6]
Lumbricus castaneus
This species is also known as the Chestnut Worm. The Castaneus is endemic to England and most active in the spring months.[7]
Eiseniella tetraedra
This red worm may vary from 2 to 8 cm in length. It is considered an aquatic species with a distinctive cliellum (saddle) around its segments. They are present widespread across Britain and found year round within: gardens, fields, pastures, forests, estuary flats, lake shores, manure, and other damp conditions.[8]
Ecological Impact
Benefits
Based on the feeding behavior of earthworms, epigeic species have a greater potential as waste decomposers than anecics and endogeics due to their humus consumption and surface dwelling nature.[6] Epigeics are considered detrivores but will feed primarily on microorganisms associated with the decaying surface litter while facilitating the breakdown and mineralization of that region.[9] These earthworms exert important effects on the presence of decomposer microorganisms and their microbial grazers, which leads to an increase in the rate of decomposition of the organic matter.[10] Nevertheless, little is known about whether and to what extent these changes are due to the direct effects of earthworms on the decaying material (i.e. transformations of the ingested material during passage through the gut) or due to indirect effects related to their casting and burrowing activities.[11]
Subversive effects
Invasive earthworms are particularly problematic in previously earthworm-free temperate and boreal forests of North America that are dominated by Acer, Quercus, Betula, Pinus and Populus trees.[3] Epigeics physically disrupt the organic layer of the soil by consuming and mixing the F and H Soil Horizons layers, producing a homogeneous and granular form of organic forest floor.[5] It has been shown that fungi and macroinvertebrate populations are altered in presence of epegeics.[1] Although some invasive epegeics change the dynamics of these forests they seem to have a limited impact on the mineral structure of the soil and composition of the forest floor. The endoeic and anecic earthworms are found to have more deleterious effects on the forest floor and in turn the health of ecosystem with their extraordinary mixing of the Soil Horizons.[1][3]
References
[1] Hale, Cindy. Earthworms of the Great Lakes. Kollath+Stensaas Pub., 2013.
[2] Edwards, Clive A. “Natural Resources Conservation Service.” Home | NRCS Soils, 2019, https://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/soils/health/biology/?cid=nrcs142p2_053863
[3] Frelich, Lee E., et al. “Earthworm Invasion into Previously Earthworm-Free Temperate and Boreal Forests.” Biological Invasions Belowground: Earthworms as Invasive Species, 2006, pp. 35–45., doi:10.1007/978-1-4020-5429-7_5. https://link.springer.com/article/10.1007/s10530-006-9019-3
[4] Terhivuo, Juhani, and Anssi Saura. “Dispersal and Clonal Diversity of North-European Parthenogenetic Earthworms.” Biological Invasions Belowground: Earthworms as Invasive Species, 2006, pp. 5–18., doi:10.1007/978-1-4020-5429-7_2. https://link.springer.com/article/10.1007/s10530-006-9015-7
[5] Addison, J.a., and S.b. Holmes. “Effect of Two Commercial Formulations of Bacillusthuringiensis Suhsp. Kurstaki on the Forest Earthworm Dendrobaenaoctaedra.” Canadian Journal of Forest Research, vol. 26, no. 9, 1996, pp. 1594–1601., doi:10.1139/x26-179. https://www.nrcresearchpress.com/doi/abs/10.1139/x26-179#.XM0hFo5KjIU
[6] Singh, Arjun, et al. “Taxonomic and Functional Diversity of the Culturable Microbiomes of Epigeic Earthworms and Their Prospects in Agriculture.” Journal of Basic Microbiology, vol. 56, no. 9, 2016, pp. 1009–1020., doi:10.1002/jobm.201500779. https://onlinelibrary.wiley.com/doi/full/10.1002/jobm.201500779
[7]“Chestnut Worm (Lumbricus Castaneus).” INaturalist.org, https://www.inaturalist.org/taxa/484186-Lumbricus-castaneus
[8]“Eiseniella Tetraedra.” NatureSpot, 2019, https://www.naturespot.org.uk/
[9] Hendrix, Paul F., and Patrick J. Bohlen. “Exotic Earthworm Invasions in North America: Ecological and Policy Implications.” BioScience, vol. 52, no. 9, 2002, p. 801., doi:10.1641/0006-3568(2002)052[0801:eeiina]2.0.co;2. https://pdfs.semanticscholar.org/2540/a686a6cfa2f71fef74fd692182821583aa93.pdf
[10] Monroy, Fernando, et al. “Changes in Density of Nematodes, Protozoa and Total Coliforms after Transit through the Gut of Four Epigeic Earthworms (Oligochaeta).” Applied Soil Ecology, vol. 39, no. 2, 2008, pp. 127–132., doi:10.1016/j.apsoil.2007.11.011. https://www.researchgate.net/publication/222415275_Changes_in_density_of_nematodes_protozoa_and_total_coliforms_after_transit_through_the_gut_of_four_epigeic_earthworms_Oligochaeta
[11]Domínguez, Jorge, and María Gómez-Brandón. “The Influence of Earthworms on Nutrient Dynamics during the Process of Vermicomposting.” Waste Management & Research, vol. 31, no. 8, 2013, pp. 859–868., doi:10.1177/0734242x13497079. http://jdguez.webs.uvigo.es/wp-content/uploads/2013/07/the-influence-of-earthworms-on-nutrient-dynamics.pdf